Cellular mechanisms of growth inhibition of human epithelial ovarian cancer cell line by LH-releasing hormone antagonist Cetrorelix.
نویسندگان
چکیده
We investigated the direct effects of LH-releasing hormone (LH-RH) antagonist, Cetrorelix, on the growth of HTOA human epithelial ovarian cancer cell line. RT-PCR revealed the expression of mRNA for LH-RH and its receptor in HTOA cells. Cetrorelix, at concentrations between 10(-9) and 10(-5) M, exerted a dose-dependent antiproliferative action on HTOA cells, as measured by 5-bromo-2'-deoxyuridine incorporation into DNA. Flow cytometric analysis indicated that Cetrorelix, at 10(-5) M, arrested cell cycle in HTOA cells, at G1 phase, after 24 h of treatment. Western blot analysis of cell cycle-regulatory proteins demonstrated that treatment with Cetrorelix (10(-5) M) for 24 h did not change the steady-state levels of cyclin D1, cyclin E, and cyclin-dependent kinase (Cdk)4 but decreased the levels of cyclin A and Cdk2. The protein levels of p21 (a Cdk inhibitor) and p53 (a suppressor of tumor cell growth and a positive regulator for p21 expression) were increased by Cetrorelix, but the levels of p27 (a Cdk inhibitor) did not change significantly. Flow cytometric analysis and terminal deoxynucleotidyltransferase-mediated deoxyuridine 5-triphosphate nick end labeling staining demonstrated that Cetrorelix (10(-5) M) induced apoptosis in HTOA cells. In conclusion, Cetrorelix directly inhibits the proliferation of human epithelial ovarian cancer cells through mechanisms mediated by LH-RH receptor and involving multiple events in cell cycle progression, including G1 phase cell cycle arrest coupled with down-regulation of cyclin A-Cdk2 complex levels, presumably attributable to an up-regulation of p53 and p21 protein levels and apoptosis.
منابع مشابه
Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer
The expression of GnRH (GnRH-I, LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the ovary. The proliferation of human ovarian cancer cell lines is time- and dose-dependently reduced by GnRH and its superagonistic analogs. The classical GnRH receptor signal-transduction mech...
متن کاملCRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کاملComparison of LH concentrations in the early and mid-luteal phase in IVF cycles after treatment with HMG alone or in association with the GnRH antagonist Cetrorelix.
Luteinizing hormone (LH) is mandatory for the maintenance of the corpus luteum. Ovarian stimulation for IVF has been associated with a defective luteal phase. The luteal phases of two groups of patients with normal menstrual cycles and no endocrinological cause of infertility were retrospectively analysed in IVF cycles. Thirty-one infertile patients stimulated with human menopausal gonadotrophi...
متن کاملLuteinizing Hormone-Releasing Hormone (LHRH)-I antagonist cetrorelix inhibits myeloma cell growth in vitro and in vivo.
The objective of this study was to determine the effects of an luteinizing hormone-releasing hormone (LHRH)-I antagonist, Cetrorelix, on human multiple myeloma (MM) cells and to elucidate the mechanisms of action. We showed that LHRH-I and LHRHR-I genes were expressed in MM cell lines and primary MM cells. Treatment with Cetrorelix inhibited growth and colony-forming ability of myeloma cells, i...
متن کاملRevival of the natural cycles in in-vitro fertilization with the use of a new gonadotrophin-releasing hormone antagonist (Cetrorelix): a pilot study with minimal stimulation.
Natural cycles were abandoned in in-vitro fertilization (IVF) embryo transfer, due to premature luteinizing hormone (LH) surges--and subsequent high cancellation rates. In this study, we investigated the administration of a new gonadotrophin-releasing hormone antagonist (Cetrorelix) in the late follicular phase of natural cycles in patients undergoing IVF and intracytoplasmic sperm injection (I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical endocrinology and metabolism
دوره 87 8 شماره
صفحات -
تاریخ انتشار 2002